#### Big data, small explanatory power? Random forest modelling of cereal yield variability across contrasting farming systems

**João Vasco Silva\***, Joost van Heerwaarden, <u>Pytrik Reidsma</u>, Alice Laborte, Kindie Tesfaye, Martin van Ittersum



j.silva@cgiar.org Agronomy-at-scale Data Scientist Sustainable Agrifood Systems CIMMYT-Zimbabwe

FSD Symposium, Marrakech, November 2022

### Background

- Big data as an **important asset** for agronomic research and decision, the end of traditional agronomy?
- Direct application to **explain and/or predict** crop yield variability in farmers' fields across time and space complex due to G x E x M
- Unclear **how useful** big data for farming systems in different stages of intensification. Yield variability, data quality?
- **Objective**: Assess the potential for on-farm production data to uncover systematic and predictable patterns in yield variation

CIMMYT

# > 10.000 farm-year combinations

#### Maize and wheat in Ethiopia



Sample: 6350 fields Year: 2009/10 & 2013 Field size: < 1.5 ha Source: CIMMYT Surveys Rice in Central Luzon, Philippines



Sample: 2000 fields Year: 2014 WS and DS Field size: < 1.3 ha Source: IRRI Surveys

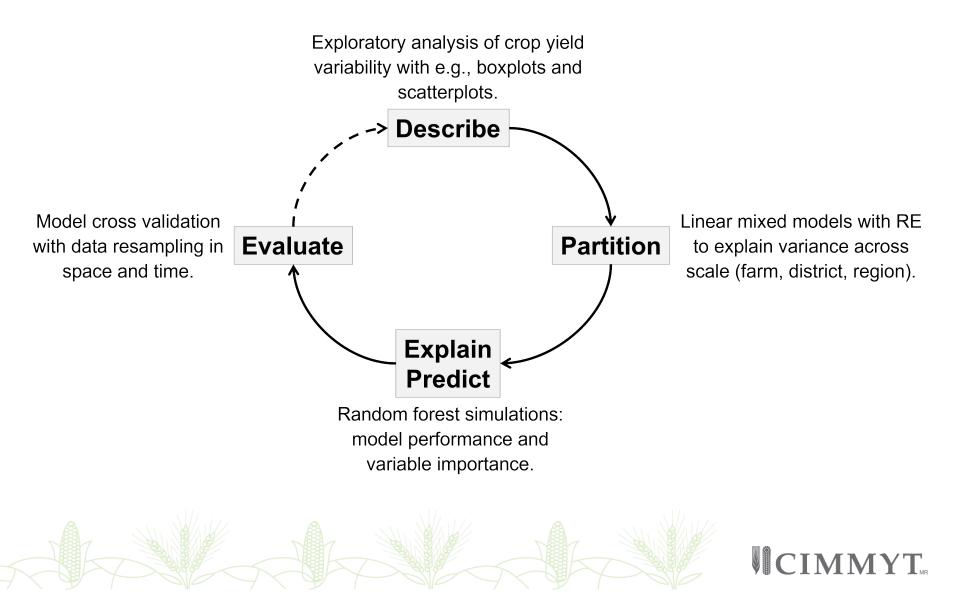
# Wheat and barley in the Netherlands



Sample: 1770 fields Year: 2015 – 2017 Field size: < 7.9 ha Source: Agrovision Records

#### 

## **Methodological approach**



## **Model formulation**

**Predictive variables =** independent of growing season, time-invariant WorldClim, GYGA climate zones, SoilGrids

**Explanatory variables =** growing-season specific, time-variant farm survey variables, weather from AgERA5

| Model    | Description                           | Explain | Predict | Variables (n)       |
|----------|---------------------------------------|---------|---------|---------------------|
| M1gps    | GPS coordinates only                  | Х       | Х       | 2                   |
| M2pc     | M1 + predictive climatic variables    |         | Х       | 2 + 22 = 24         |
| M3pcs    | M2 + predictive soil variables        |         | Х       | 24 + 9 = 33         |
| M4pcsf   | M3 + predictive survey variables      |         | Х       | 33 + 3 = 36         |
| M5ec     | M1 + explanatory climatic variables   | Х       |         | 2 + 32 = 34         |
| M6ecs    | M5 + explanatory soil variables       | Х       |         | 34 + 2 = 36         |
| M7ecsf   | M6 + explanatory survey variables     | Х       |         | 36 + 17 = 53        |
| M8pec    | M1 + pred. & expl. climatic variables | Х       | Х       | 2 + 54 = 56         |
| M9pecs   | M8 + pred. & expl. soil variables     | Х       | Х       | 56 + 11 = 67        |
| M10pecsf | M9 + pred. & expl. survey variables   | Х       | Х       | 67 + 20 <b>= 87</b> |
|          |                                       |         |         |                     |

### **Model evaluation**

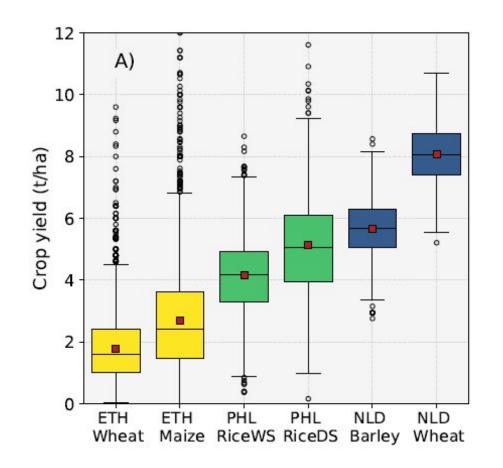
Cross-validation scheme with data resampling as follows:

- 1. Traditional "out-of-bag" (Breiman, 2001) for model fitted to pooled data
- 2. Cross-validation over farms:
  - 70% of farm-year combinations used for model training
  - remaining 30% for model evaluation (R<sup>2</sup> reported)
- 3. Cross-validation over zones:
  - 70% of admin provinces in the data used for model training
  - remaining 30% for model evaluation (R<sup>2</sup> reported)
- 4. Cross-validation over years:
  - 1 or 2 years (ETH and NLD) in the data used for model training
  - remaining year used for model evaluation (R<sup>2</sup> reported)





# **Cereal yield variability**



- Greater yield variability (standard deviation) for the lowest administrative unit in Ethiopia, followed by the Philippines, and the Netherlands
- Random effects accounted for 55% of residual variance in Ethiopia, 30% in the Philippines, and more than 70% in the Netherlands

# **Explanatory power**

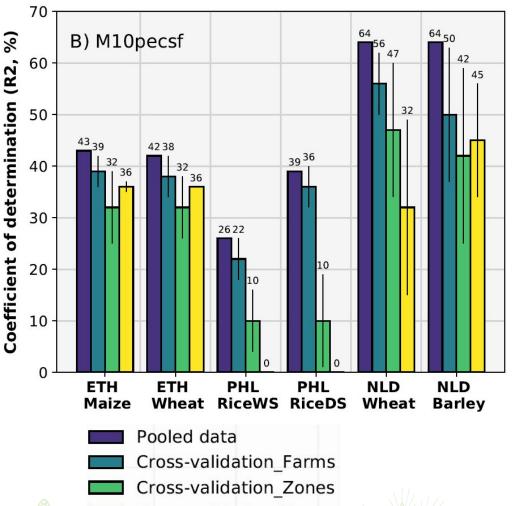
|                       | M1<br>gps | M2<br>pc | M3<br>pcs | M4<br>pcsf | M5<br>ec | M6<br>ecs | M7<br>ecsf | M8<br>pec | M9<br>pecs | M10<br>pecsf |                 |
|-----------------------|-----------|----------|-----------|------------|----------|-----------|------------|-----------|------------|--------------|-----------------|
| Ethiopia Wheat -      | 0.18      | 0.18     | 0.18      | 0.32       | 0.20     | 0.21      | 0.40       | 0.20      | 0.21       | 0.42         | - 0.6 Coefficie |
| Ethiopia Maize -      | 0.18      | 0.21     | 0.21      | 0.31       | 0.22     | 0.23      | 0.40       | 0.22      | 0.22       | 0.43         | 4               |
| Philippines Rice WS - | 0.02      | 0.20     | 0.18      | 0.20       | 0.15     | 0.16      | 0.21       | 0.21      | 0.21       | 0.26         | - 0.4 det       |
| Philippines Rice DS - | 0.01      | 0.33     | 0.34      | 0.34       | 0.24     | 0.25      | 0.35       | 0.31      | 0.32       | 0.39         | - 0.3 minat     |
| Netherlands Wheat -   | 0.26      | 0.26     | 0.24      | 0.24       | 0.61     | 0.61      | 0.62       | 0.63      | 0.64       | 0.64         | - 0.2 R2        |
| Netherlands Barley -  | 0.50      | 0.52     | 0.53      | 0.55       | 0.60     | 0.60      | 0.59       | 0.64      | 0.64       | 0.64         | - 0.1 %         |

> Farm survey variables improve explanatory power in **Ethiopia** 

- Predictive climatic variables improve model performance in the Philippines
- Explanatory climatic variables improve model performance in the Netherlands

CIMMYT

### **Predictive power**



Cross-validation\_Years

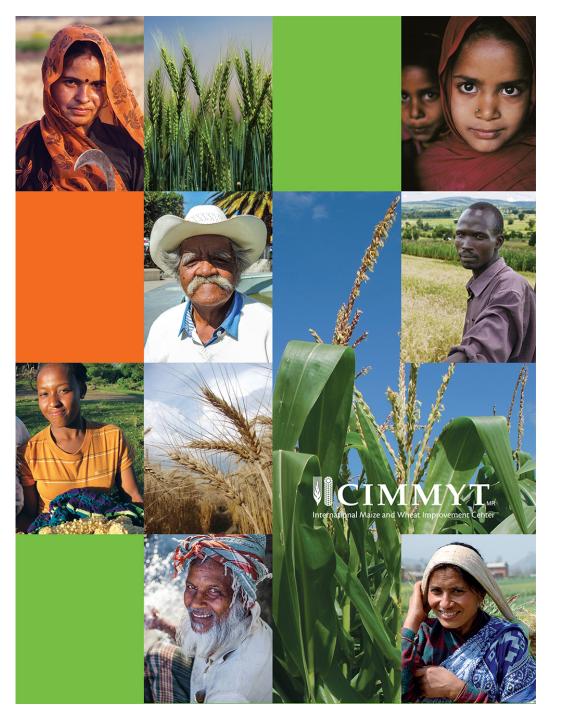
- Cross-validation across farms reduces predictive power by 5-10% (except for barley) compared to the pooled data.
- Cross-validation across space
   or time reduces predictive power
   considerably compared to the
   pooled data, especially in the
   Philippines and in the Netherlands.

CIMMYT

#### **Take-home messages**

- 87 variables account for 65% of yield variability in the Netherlands and less than 45% in Ethiopia and in the Philippines
- 2. We need to understand better data quality, 'missing predictors', spatial and temporal extent of the data
- 3. Type of variables and cross-validation scheme have strong impact on model performance system-specific or dataset-specific?
- 4. Big data from farmers' fields may seem to explain yield variability, yet the same variables cannot be used to predict it what value for big data then?





# Thank you for your interest!

João Vasco Silva, PhD

j.silva@cgiar.org

Agronomy-at-scale Data Scientist Sustainable Agrifood Systems CIMMYT-Zimbabwe

# Variable importance

#### Out of a total of 87 variables:

- Nutrient management

   (explanatory survey variables)
   most important for cereal yield
   in Ethiopia
- Predictive climatic variables most important for rice yield in the Philippines
- Explanatory climatic variables most important for cereal yield in the Netherlands

