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Coupling machine learning-based cloud computing with multiple crop models for robust
yield predictions in arid regions

Outlines:

» Why robust predictions of yield is a hot spot?

» What is the developed approach?

» Advantages of CMs and ML in yield prediction

» Our developed hybrid CMs-ML approach, why it is important?

> What is next?



Why accurate yield prediction is
important?

> It plays an essential role in decision making at global, regional, and field levels
> Developing and updating the yield gap in a specific region

> If a farmer knows how much yield he can expect from his land, he can plan his crops
accordingly and increase his profit margin

> Early crop yield prediction plays an important role in reducing famine by estimating the food
availability for the growing world population

> Building up accurate adaptation options for climate change scenarios

» Minimizing trade-offs between yield and resource efficiency for farming cropping systems
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Importance of dynamic crop models

* Diagnose problems (Yield Gap Analysis)

* Precision agriculture

— Diagnose factors causing yield variations
— Prescribe spatially variable management

* Water and irrigation management
* Soil fertility management

* Plant breeding and Genotype * Environment
interactions (“virtual” crop models)

* Gene-based modeling
* Yield prediction for crop management

Climate variability & risk management
Climate change impacts & adaptation
Soil carbon sequestration

Land use change analysis

Targeting aid (Early Warning)

Yield forecasting

Biofuel production

Risk insurance (rainfall)
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[Importance of machine learning aIgorithmsJ

» Today, machine learning in agriculture is one of the fastest-growing areas. Its
applications in farming range from simple analytics systems to complex
robotics hardware. Therefore, a growing number of stakeholders are raising
awareness of the potential advantages of using ML agriculture and
collaborating with Data Science and Al companies to get reliable input data
for the data analyses.

» A machine learning model can be descriptive or predictive, depending on the
research problem and research questions

» Machine Learning has found more utility with the arrival of big data
technology

» ML can avoid CMs limitations (biotic stress, salinity, P, K, Micronutrients) if
used as hybrid-approach

» ldentify the most important features affecting the dependent variable

> Ml could be used in cloud for elastic flexible cost-effective storaae (aive



https://indatalabs.com/

Why is Hybrid CMs-ML needed?

» Tackling the limitations of both CMs and ML in an integrated approach

» Working easily and efficiently with big dataset

» The potential of using cloud computing for fast, robust and cost-effective computation
» The potential of integrating extensive analysis such as NLP, Sentiment analysis, ,...

» Ensure robust prediction and lower uncertainty



WHAT’S NEXT
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