

Silvopastoral systems in the dry tropics of Mexico: A socialecological approach

Carlos González Esquivel

Advantages of silvopastoral systems

- High quality forage
- N fixation
- Soil improvement
- Erosion control, moisture maintenance
- Shade, fences, other uses of trees
- Parasite control, carcass quality (Murgueitio 2011)

Study area: Adjacent communities to the Biosphere Reserve Chamela-Cuixmala, Jalisco (Pacific Coast)

Ecological features

Tropical, warm subhumid climate with high seasonality and inter and intra-annual variability. Mean annual rainfall 800 mm (340 – 1329). Mean annual temperature 24.6°C.

Topography: Plains and hilly terrains (11 and 89% respectively) < 300 masl. Shallow soils (<30 cm) with low nutrient content.

The region is relevant for conservation for its high biodiversity and endemism. The Biosphere Reserve has conserved forests and is surrounded by agricultural areas including secondary forests of different ages, primary forests, cultivated grasslands and few annual crops.

Forests cover between 70 - 80 % of the area and are highly resilient, but little is known about their conservation status.

Social and productive context

Beef livestock is the main economic activity in the region. It is family owned, under extensive management (< 2 LSU/ha), focused on breeding and sale of calves for fattening.

Silvopastoral management is traditional, using low technology and external inputs. Infrastructure consists in fences, small reservoirs and handling pens.

Farms go from 17 to 200 ha and herds from 15 to 150 animals. Water availability is variable and strongly determines stocking rate.

Market context

The main income of families comes from selling calves (4 to 60/family/year) to middlemen. Calves are then taken to feedlots outside the region.

Middlemen prefer smaller animals in order to obtain higher profits. Thus, the price paid per kg drops after 240 kg. Prices are unstable and seasonal, but have increased over the last decade, which incentivises cattle production, as there are few other economic activities in the region.

Public policies

During the 1970s extensive cattle production was promoted through deforestation, credits, improved breeds and inputs. Small subsidies were given in the 2010s per livestock unit.

In recent years, regulations have become stricter regarding logging and fire in the buffer areas next to the Reserve. Some communities receive environmental services payments, destined to maintaining anti-fire trenches, cattle restriction areas and removal of sick or dead trees.

Forest management in the study area (Sánchez-Romero et al 2021)

Farm typology

Results

Technology / resource access	Technified (6)	Traditional (15)
Training	Yes	No
Access to water	High	Low
No. of animals	109 X	52 X
Crops (ha) Feed supplementation	14 X High	1 X Low
forest / grassland	Extensive (8)	Intensive (3)
Forest proportion Grassland proportion	52 – 90 % 3 – 43 %	8 – 9 % 73 – 84 %

Impact of livestock intensity on dry tropical forest

vegetation and soils

	Componentes	Variables evaluadas
Vegetation	Established vegetation, woody sp	 BHD, height Abundance and richness, BHD ● 1cm, 1- 5cm, >5cm Diversity, dominance
	Regeneration vegetation, juveniles (8)	 Height, diameter, base are, canopy cover Abundance and richness Diversity, dominance
	Disponibilidad de forraje (3)	 Forage trees and shrubs: Abundance, forage Herbs: forage
Soil	Fertility (4)	 Organic matter Nitrates, ammonia, ortophosphates
	Structure and hydric capacity	 Apparent density Stable aggregates: Micro (< 250 μm), macro (250-1000, > 1000 μm) Field capacity
	Microbiota (8)	 Total microbiota Bacteria: Total, Gram +, Gram -, Actinobacteria Fungi: Total, mycorrhizal, saprotrophyc
	Cover (3)	Herbs: Total, palatable, non palatable
	Chemical (1)	• pH

Methods

ela-Cuixmala

Google

© 2016 INEGI

Effects of three levels of livestock (dung patches, paths, cut trees) on vegetation and soil variables. Only variables with significant differences are shown (p< 0.05).

Sánchez Romero, 2021

FORAGE POTENTIAL OF WOODY SPECIES

16 species were selected based on the number of mentions in 32 interviews and two workshops with farmers (total \approx 70)

Abundance in 21 sampling sites (Sánchez-Romero et al, 2021b)

Which trees do we want?

- •Nutritive quality
- Forage yield
- •Resistance to drought, fire, pests
- Seed production season
- •Easiness of management (direct planting, pruning)

Biomass (kg DM/tree) and nutritive quality of leaves (g kg⁻¹ DM)

Species	Biomass	DM (g kg ⁻¹ FM)	СР	CF	Ashes	Fat	СН
Acacia macracantha	0.2 ± 0.3	474.3 ± 49.4	164.0 ± 13.0) 106.3 ± 35.8	92.0 ± 16.8	49.1 ± 9.1	589.4 ± 31.5
Apoplanesia paniculata	0.05 ± 0.06	464.1 ± 47.8	177.5 ± 17.9	107.7 ± 43.3	106.3 ± 5.4	24.5 ± 3.9	584.0 ± 52.4
Caesalpinia caladenia	0.1 ± 0.1	389.7 ± 39.9	90.1 ± 25.2	150.6 ± 21.5	114.9 ± 23.5	40.2 ± 9.3	604.2 ± 37.4
Caesalpinia coriaria	0.5±0.6	562.4 ± 42.1	111.3 ± 30.4	147.6 ± 16.8	64.0 ± 14.0	26.8 ± 4.5	650.5 ± 42.0
Caesalpinia platyloba	0.2 ± 0.1	362.0 ± 51.3	171.3 ± 10.8) 136.7 ± 44.7	79.1 ± 11.5	28.0 ± 6.1	585.6 ± 36.3
Caesalpinia sclerocarpa	0.04 ± 0.04	506.8 ± 69.0	111.0 ± 13.9	93.2 ± 15.8	76.6 ± 06.3	31.9 ± 8.9	646.9± 147.4
Cordia elaeagnoides	0.3 ± 0.5	331.7 ± 76 7	167.8 ± 11.0	97.8 ± 23.1	147.1 ± 13.8	30.2 ± 4.2	557.1 ± 34.0
Guazuma ulmifolia	0.6±0.8	448.9 ±120.5	127.8 ± 7.8	127.4 ± 41.9	112.8 ± 11.1	38.8 ± 6.9	593.0 ± 51.3
Hura polyandra *	9.9 ± 15.5	387.4 ± 54.5	103.3 ± 27.3	197.4 ± 17.5	102.9 ± 87.3	33.0 ± 3.3	484.8 ± 86.1
Leucaena lanceolata	0.07 ± 0.07	358.2 ± 75.4	206.5 ± 33.9	> 150.7 ± 13.9	86.5 ± 9.1	61.7 ± 17.9	498.3 ± 34.0
Lonchocarpus mutans	0.07 ± 0.06	543.8 ± 61.1	237.7 ± 24.0) 165.6 ± 12.3	106.3 ± 13.0	29.5 ± 7.7	461.0 ± 31.0
Piranhea mexicana	0.1 ± 0.2	249.1 ± 38.5	131.2 ± 4.9	205.4 ± 31.0	58.1 ± 9.8	31.6 ± 4.9	569.0 ± 47.6
Spondias purpurea	0.1 ± 0.1	845.5 ± 67.4	128.3 ± 9.3	148.9 ± 44.9	129.3 ± 22.5	31.2 ± 8.3	562.2 ± 33.8
Promedio	1.0 ± 5.0	457.3 ±151.9	148.1 ± 46.6	141.7 ± 45.2	98.0 ± 36.6	33.0 ± 3.3	567.9 ± 81.2

Biomass (kg DM/tree) and nutritive quality of fruits (g kg⁻¹ DM)

Species	Biomass	DM (g kg ⁻¹ FM)	СР	CF	Ashes	Fats	СН
Acacia macracantha	1.9 ± 2.7	507.6 ± 86.6	167.5 ± 20.9	77.6 ± 12.8	190.7 ± 39.9	9.2 ± 1.6	492.9 ± 45.8
Caesalpinia caladenia	0.2 ± 0.4	550.9 ± 233.6	79.8 ± 45.1	81.9 ± 20.7	163.3 ± 57.3	18.9 ± 8.7	587.5 ± 63.0
Caesalpinia coriaria	1.0 ± 1.4	720.0 ± 128.1	68.5 ± 14.9	137.7 ± 67.7	138.9 ± 40.4	7.7 ± 4.1	582.4 ± 97.5
Caesalpinia eriostachys	3.9 ± 5.9	545.8 ± 122.7	104.0 ± 17.7	86.8 ± 30.5	191.2 ± 38.4	26.0 ± 13.4	537.2 ± 40.4
Caesalpinia platyloba	1.5 ± 1.6	877.8 ± 55.4	122.2 ± 22.3	75.1 ± 18.4	226.7 ± 30.1	47.9 ± 24.4	445.5 ± 48.2
Caesalpinia sclerocarpa	0.8 ± 1.0	919.4 ± 94.5	68.0 ± 14.8	59.3 ± 24.6	170.2 ± 33.4	4.5 ± 1.7	624.9 ± 37.7
Gliricidia sepium	0.6 ± 0.8	346.5 ± 35.7	119.5 ± 39.3	70.2 ± 13.3	184.7 ± 31.4	27.2 ± 9.9	535.6 ± 38.2
Guazuma ulmifolia	4.4 ± 6.2	443.3 ± 143.9	80.5 ± 22.9	59.1 ± 8.8	203.1 ± 50.5	23.0 ± 6.7	557.0 ± 52.9
Leucaena lanceolata	0.5 + 0.8	985.9 ± 401.1	202.6 ± 92.4	104.3 ± 44.3	179.5 ± 88.1	24.9 ± 12.5	425.9±114.9
Senna mollissima	0.2 ± 0.3	504.1 ± 207.7	122.6 ± 15.2	81.5 ± 18.7	194.8 ± 20.5	28.6 ± 69.8	515.8 ± 71.1
Spondias purpurea	3.5 ± 6.7	283.0 ± 52.7	81.9 ± 22.7	49.0 ± 16.6	216.4 ± 38.9	32.4 ± 12.7	561.1 ± 66.7
Promedio	1.7 ± 3.7	617.8 ± 283.8	110.1 ± 54.1	79.8 ± 36.9	187.3 ± 50.2	22.7 ± 25.7	534.1 ± 85.9

Structural attributes

Species	BHD (cm)	Height (m)	Base area (cm ²)	Canopy cover (m ²)	Stems (no.)
Acacia macracantha	20.30 ± 22.81	5.51 ± 2.16	107.23 ± 141.32	18.36 ± 24.65	4.35 ± 3.69
Apoplanesia paniculata	14.54 ± 18.74	4.57 ± 2.49	62.62 ± 106.25	4.78 ± 4.92	4.27 ± 3.92
Caesalpinia caladenia	9.56 ± 8.77	3.78 ± 1.44	36.86 ± 48.19	7.68 ± 8.53	2.73 ± 2.10
Caesalpinia coriaria	43.62 ± 35.60	4.93 ± 1.56	335.80 ± 511.25	26.23 ± 22.09	9.47 ± 10.12
Caesalpinia eriostachys	26.94 ± 27.01	5.61 ± 1.95	170.02 ± 196.50	24.50 ± 20.39	5.63 ± 5.64
Caesalpinia platyloba	14.60 ± 15.65	4.82 ± 1.92	75.23 ± 95.99	11.35 ± 11.69	3.29 ± 2.99
Caesalpinia sclerocarpa	24.60 ± 17.60	6.52 ± 2.41	241.72 ± 183.68	27.34 ± 27.86	2.88 ± 2.24
Cordia elaeagnoides	22.81 ± 24.24	6.28 ± 3.58	270.63 ± 337.03	9.56 ± 13.14	2.69 ± 1.78
Gliricidia sepium	19.74 ± 22.79	4.56 ± 2.55	97.72 ± 205.75	15.13 ± 21.66	6.00 ± 4.11
Guazuma ulmifolia	33.65 ± 35.77	5.37 ± 2.10	257.79 ± 347.23	31.25 ± 40.15	5.97 ± 5.07
Hura polyandra	21.88 ± 18.34	6.70 ± 3.51	598.78 ± 836.66	77.80 ± 103.28	1.25 ± 0.68
Leucaena lanceolata	11.12 ± 10.27	5.20 ± 1.74	72.60 ± 113.37	9.04 ± 11.99	2.31 ± 2.35
Lonchocarpus mutans	21.11 ± 26.29	5.49 ± 2.08	81.15 ± 125.64	3.40 ± 4.10	5.60 ± 5.01
Piranhea mexicana	14.50 ± 11.99	6.28 ± 2.35	151.86 ± 198.97	4.60 ± 5.38	2.00 ± 1.37
Senna mollissima	6.83 ± 9.18	4.18 ± 1.28	29.37 ± 60.41	2.89 ± 2.60	1.73 ± 1.33

Correlation coefficients: foliage

Correlation coefficients: fruits

Allometric equations (Chave et al 2014)

$$\log(B_i) = \beta_0 + \beta_H \log(H_i) + \beta_{BA} \log(BA_i) + \beta_{cov} \log(C_i) + \beta_s \log(S_i) + \beta_{sp} Sp_i + \varepsilon_i$$

Model	Equation	R ²
Foliage, general	$B = 0.02614 \times C^{0.83826}$	0.5914
Foliage, specific	$B_{sp} = e^{-3.64 + \beta sp} \times C^{0.83826}$	0.6813
Fruits, general	$B = 0.00576 \times C^{0.6250} \times H^{1.6087}$	0.5222
Fruits, specific	$B_{sp} = e^{-3.755 + \beta sp} \times C^{0.55158} \times BA^{0.55130}$	0.6547
Foliage <i>, H. polyandra</i>	$B = 0.01289301 \times BA^{1.01000}$	0.9156

B – biomass, C – canopy cover, H – height

BA – base area S – stems Sp – species \mathcal{E}_i - std dev

Prácticas silvopastoriles en el trópico seco Guía para ganaderos

Carlos González Esquivel, Rosa Sánchez Romero, Eleonora Camacho Moreno, Alicia Castillo Álvarez, Francisco Mora Ardila, Gabriela Romo Díaz

Los bancos de proteína son pequeñas áreas dentro de los potreros sembradas con árboles forrajeros y asociadas con pasturas o cultivos circundantes. El ganado puede pasar pequeños periodos al día ramoneando en estas zonas. También se pueden utilizar mediante la técnica de "corte y acarreo", es decir, cortar forraje de los bancos evitando el sobre ramoneo y llevándolo a donde esté el ganado. Su función principal es la producción de altas cantidades de forraje fresco, principalmente de plantas leguminosas (de la familia del frijol, haba, guaje) y otras especies de crecimiento rápido. El arreglo de los árboles lo podemos realizar en fila, cuadro o tres bolillo.

Ventajas

- · El espacio se aprovecha de mejor manera que en otras plantaciones.
- Existe mayor disponibilidad de forraje de alta calidad para el ganado.

Es importante considerar que:

- Se requiere mano de obra, si el suelo es pobre hay que aplicar abonos para su establecimiento.
- Se debe cercar el espacio y esperar a que los arbolitos crezcan de 6 meses a 3 años para evitar daños por el ganado.

¿Qué árboles podemos plantar en los bancos de proteína?

- Guaje (Leucaena leucocephala)
- Guajillo (Leucaena lanceolata)
- Cacahuananche (Gliricidia sepium)
- Guácima (Guazuma ulmifolia)
- Moringa (Moringa oleifera)
- Senna (Senna sp)
- Nopal (Opuntia sp)
- Cascalote (Caesalpinia coriaria)

Se reproduce por semilla. Para preservarlas hay que almacenarlas en recipientes herméticos hasta por 10 años y colocar en un lugar fresco o en refrigeración.

Su germinación puede adelantarse remojando la semilla en agua tibia durante tres minutos, escurrirla y ponerla a secar al sol. La semilla germina de tres a 20 días después de la siembra. Las plantitas requieren al menos 15 semanas en el plantero.

http://www.librosoa.unam.mx/handle /123456789/1209

Tolerancia a la salinidad: sí.

Media.

Este árbol puede alcanzar hasta 12 metros de altura. No fija nitrógeno y a menudo produce troncos múltiples desde la base. Crece bien en las orillas de ríos y lugares que se inundan.

Pilot of the FAO Tool for Agroecology Performance Evaluation (TAPE) in Mexico

Characterization of agroecological transitions

PT – Total points, Dv - Diversity, Sn - Synergies, Ef - Efficiency, Rc - Recycling, Rs - Resilience, Ct – Food culture and traditions, Cc – Knowledge co-creation and exchange, Vh – Human and social values, Ec – Circular and solidarity economy, Gr – Responsible governance.

Total points 50 - 88% (average 68). Out of 51 farms, 31 were between 50 – 70% and 20 above 70%, although with high variability.

Z1 plains, Z2 hills, Z3 mixed

A proposal for the design of biodiverse SP landscapes

Unidades de paisaje Bosque maduro Bosque secundario Pastizal con leñosas Cuerpo de agua Cultivo anual Asentamiento humano Borde ripario Cerca viva

Sánchez Romero and González Esquivel, 2022 (adapted from Arroyo et al., 2020)

